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Abstract

Technology diffusion often plays a critical role in models of trade and economic growth.
Most existing empirical tests for international technology spillovers suggest some role for
spillovers in explaining productivity growth. It has been relatively diffi cult, however, to
identify separate roles for the direct and indirect channels of knowledge spillovers. The in-
fluence of these channels is often confounded due to the focus on TFP and R&D spending
within a cross section or panel data setting. This paper employs an alternative methodol-
ogy to investigate the role of direct knowledge spillovers. Using citation weighted domestic
patents, citation weighted foreign patents and value added for 14 US manufacturing indus-
tries over the period 1977-2004 a Panel VAR methodology is employed to investigate the
dynamic role of direct and indirect knowledge spillovers. Evidence for the role of the direct
knowledge spillovers channel is found - an increase in citation weighted patents abroad di-
rectly increases the measure of domestic citation weighted patents, after accounting for the
influence of productivity/value added. The role of foreign innovative activity, however, is
small relative to the role of US innovative activity in explaining the dynamics of industry
value added.
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1 Introduction

International technology spillovers play a potentially important role in economic growth and

productivity/income convergence. Technology diffusion often plays a critical role in theoretical

models of international trade and economic growth and economists’understanding of the rela-

tionship between trade, knowledge creation and growth. The literature recognizes roles for both

direct channels and indirect channels of technological diffusion. Direct channels work through

the direct benefits to researchers in one economy from knowledge generated abroad. The role

of this channel is diminished to the degree that spillovers are geographically localized and/or

the receiving economy lacks absorptive capacity to utilize the knowledge. Indirect channels for

diffusion rely on trade, often in intermediate goods, and Foreign Direct Investment (FDI). It has

been relatively diffi cult to identify separate roles for the direct and indirect channels of knowl-

edge spillovers. The influence of these channels is often confounded due to the literature focus

on TFP and R&D spending within a cross section or panel data setting. This paper employs an

alternative methodology to identify the role of direct knowledge spillovers.

The evidence provided in this paper is of significant importance in formulating an under-

standing of trade, innovation and growth. Consider the extremes encountered in the literature.

Eaton and Kortum (2001) provide a theoretical framework where technology transfer is limited

by trade and therefore geographic distance. An implication of Eaton and Kortum is that foreign

R&D and/or patents are reflected in TFP, but since the effect is indirect, there would be no im-

pact on domestic R&D and/or patents. This view promotes the indirect channel of spillovers. In

contrast, Howitt and Mayer-Foulkes (2005), Acemoglu, Aghion, and Zilibotti (2006) and Ertur

and Koch (2011) promote a view that completely abstracts from trade and explains convergence

in income growth rates via a direct spillover of knowledge across international borders, thus

promoting the importance of the direct channel for spillovers. In this view convergence does

not depend on openness or trade, but instead simply on the existence of innovator/entrepreneurs

who actively engage in innovation, thus benefiting from the public goods nature of knowledge

created internationally.
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An empirical literature has developed and provides important insights into the role of knowl-

edge/R&D spillovers. While each of the existing studies has relative strengths and weaknesses,

they are each specified in a manner that makes it diffi cult to discern the role of the direct channel

for spillovers. Despite the inability to identify the channels through which spillovers operate,

this literature does provide evidence of a role for knowledge spillovers in general, conditional on

absorptive capacity (in addition to the papers above see for example Coe and Helpman, 1995;

Yang, 2003; Kugler, 2006; Lee, 2006; Belderbos, Ito, and Wakasugi, 2008; Mancusi, 2008; Hu

and Jefferson, 2009; Coe, Helpman and Hoffmaister, 2009). Furthermore, it does seem clear

that knowledge is geographically localized to a significant degree. Keller (2002), for example,

estimates the impact of domestic and foreign R&D on TFP. The effectiveness of foreign R&D

negatively depends on the bilateral geographic distance between the source and the recipient

country. While this suggests that the role of direct knowledge spillovers in innovation and

growth is limited by geography, it by no means rules out or subordinates a direct channel for

knowledge transfer. On this issue Branstetter (2001) finds no evidence of international knowl-

edge spillovers and argues that the explanation is the geographic concentration of knowledge.

On the other hand, using a Dynamic OLS (DOLS) methodology, Lee (2006) reports significant

evidence of direct knowledge spillovers. Eberhardt, Helmers and Strauss (2013) find evidence

of knowledge spillovers and unobserved cross-sectional dependencies and argue that ignoring

spillovers can lead to inflated estimates of private returns to R&D.

The existing literature, summarized below, is largely centered on methodologies that make

use of panel data with fixed effects or time series models that do not take advantage of the poten-

tial benefits of constructing a longitudinal data set. The results of these studies confound direct

and indirect channels for spillovers. The present paper looks at more disaggregated US manu-

facturing industries instead of national aggregates and provides a full analysis of the dynamics

of spillovers by specifying a panel vector autoregression (PVAR) that is used to estimate the re-

sponse of domestic innovation following an impulse in foreign patenting while controlling for the

dynamics of value added, where the indirect channel operates, thus more accurately identifying
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the direct channel for knowledge spillovers. While no empirical methodology can completely

overcome endogeneity and omitted variable problems problems, our Panel Vector Autoregression

(PVAR) methodology and choice of domestic and foreign citation weighted patents, represent a

significant methodological improvement. In the PVAR the variables are treated symmetrically

in terms of endogeneity at the estimation stage. Furthermore, the influence of foreign patent

activity, an output measure, on domestic patent activity, another output measure, is likely to

be more direct and is likely to be influenced by fewer omitted variables. The present paper’s

methodology includes testing for cointegration, derivation of impulse responses, and calculating

forecast error variance decompositions. We believe the panel VAR approach used in this paper

is the preferred approach and represents a significant methodological improvement over existing

empirical work in this area.1

The rest of the paper is organized as follows. Section 2 summarizes the related literature.

Section 3 outlines the empirical methodology. Data construction and explanation of main vari-

ables are presented in Section 4. Section 5 provides the empirical analysis and results. Finally,

Section 6 concludes.

2 Literature Overview

The empirical literature has stressed the importance of knowledge/R&D spillovers conditional

on absorptive capacity using methodologies based on panel data with fixed effects or time se-

ries models and counfounding the direct and indirect channel of knowledge spillovers. Coe and

Helpman (1995) estimate total factor productivity (TFP) in 22 OECD countries in the period of

1971-1990 as a function of domestic and foreign cumulative R&D, where the latter is weighted

by trade partner import shares. Their paper was the first to highlight foreign R&D as a source

of knowledge spillovers. Using micro level data on US and Japanese firms’patenting over the

period of 1985-1989 and fixed effects panel methodology, Branstetter (2001) finds no evidence

1For a recent usage of panel VAR to study determinants of patents at the firm level see Blazsek and Escribano
(2012).
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of international knowledge spillovers and argues that knowledge is geographically concentrated.

In contrast, Yang (2003) finds evidence of international knowledge spillovers in Taiwan by em-

ploying a fixed effects panel approach where domestic patents are regressed on foreign patents.

However, the results of Yang might suffer from panel unit roots as the data set is only twice as

wide as it is long. In a study of 10 Colombian industries, Kugler (2006) estimates the influence

of inward FDI on TFP using time series techniques and finds evidence of inter-industry spillovers

but not intra-industry spillovers. Nevertheless, the results are presented industry by industry

and a panel data model is not used. Mancusi (2008) looks for evidence of international spillovers

by regressing citation weighted patents from the European Patent Offi ce as a function of do-

mestic and foreign R&D and a measure of absorptive capacity. Mancusi finds strong evidence

of spillovers from foreign R&D where absorptive capacity is high for laggard countries.

Using data for 16 OECD countries in the period of 1981-2000, Lee (2006) studies the effect

of inward and outward FDI, intermediate goods imports and a disembodied "direct" channel

on TFP. The direct channel is estimated through a measure of technological proximity and

patent citations between countries. Lee (2006) finds that spillovers through inward FDI and

direct channel are significant, while spillovers through outward FDI and imports of intermediate

goods are not significant.2 In addition to a focus on industry level data, our paper differs from

Lee (2006) in several important respects. First, the results in Lee (2006) are based on pooled

OLS/ DOLS with fixed effects. Therefore the dependant variable, productivity, is assumed

to be the only endogenous variable in the analysis. Plausible channels of endogeneity exist

for each variable on the right hand side of Lee’s regression. Furthermore, any factor that

influences productivity and is missing from the model specification potentially causes a bias in

the estimated influence of the direct and indirect channels on productivity.

The next section outlines our empirical methodology and estimation strategy that provide

methodological improvement to the existing literature.

2For inward FDI channels of knowledge transfer see also Belderbos, Ito and Wakasugi (2008), Bitzer and
Kerekes (2008), Bitzer, Geishecker and Gorg (2008), and Hu and Jefferson (2009).
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3 Empirical Methodology

As outlined above, existing empirical studies of knowledge spillovers confound the direct and

indirect channels for international knowledge spillovers because they often rely on measures such

as cumulative foreign and domestic R&D and their relationship to productivity. Furthermore,

the process of knowledge creation, spillovers and productivity growth are dynamic in nature

and, therefore, diffi cult to capture with cross sectional panel data methodologies that make

use of wide but short panel data sets. A vast majority of existing studies are based on these

methodologies.

The present research takes an alternative approach. In the past decade the Vector Auto

Regression (VAR) methodology, attributed to Sims (1980), has been expanded to include panel

data. It is now possible to model complex dynamics in a multivariate time series setting using

panel data sets that are relatively narrow and long. In the initial estimation all variables

are treated symmetrically in terms of endogeneity. Issues of Granger causality and stability

are easily studied. Some structure must be imposed on the estimated reduced form model to

recover structural parameters and investigate the dynamic relationships between the variables.

In some cases there is little to guide the researcher when imposing the necessary restrictions.

In other settings existing empirical and theoretical work can provide a strong case for imposing

a particular set of identifying restrictions. That is the case in the present paper.

Rather than rely on input measures such as cumulative R&D we focus on the output of inno-

vative activity, patents. Using R&D has a disadvantage, as the stochastic process of innovation

is not captured. Furthermore, the return to R&D expenditures varies based on whether it is

publicly funded or privately funded.3 Focusing on patents allows to more specifically capture

innovative activity over a longer time period. It is important to note that patents have their

disadvantages as well, namely the fact that not all knowledge that is created is patented, but

patents is the best measure to study knowledge spillovers in our setting. In addition, not all

3See Keller (2010) for a discussion of R&D, patents and productivity for studying knowledge spillovers and
their advantages and disadvantages.
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patents are equally valuable so we employ the now popular technique of weighting patents by

their citation counts (Jaffe and Trajtenberg, 1992; Jaffe and de Rassenfosse, 2016). Citation

weighted patents are collected by industry and are categorized by national origin as either US

or foreign. To account for the role of the business cycle on R&D and to control for the indirect

channel of knowledge spillovers we include industry real value added. Value added is essential

as it controls for the dynamics related to the indirect channel for knowledge spillovers, the use

of imported intermediate goods and their role in enhancing value added. Each variable in the

Panel VAR is allowed to influence its own dynamics as well as the dynamics of all the other vari-

ables in the model. Thus, it is possible to evaluate the influence of foreign innovative activity

on US innovative activity (and indeed vice versa) independent of the specific influence of foreign

innovative activity on US value added. The role of indirect knowledge spillovers on value added

through the importation of higher technology intermediate goods is captured by the dynamic

relationship between foreign innovation and US value added independent of foreign innovation’s

influence on US innovation.

The literature outlined above suggests that value added is causally prior to both domestic and

foreign innovative activity. It will take time for innovations to be implemented and impact value

added, but value added will have an important contemporaneous impact on innovation since the

existing literature strongly suggests that there is an R&D/innovation cycle that follows the

business cycle (Walde and Woitek, 2004; Ouyang, 2011; Aghion, Askenazy, Berman, Cette, and

Eymard, 2012). If innovations tend to be patented at home before they are patented abroad and

knowledge spillovers are geographically localized and spread over time then foreign patenting

activity in the US should be causally prior to US patenting activity in the US (Branstetter,

2001). This suggests a set of restrictions on the reduced form VAR that exactly identifies

the parameters of the underlying structural model. The next section provides more detail

concerning the construction of the data set. Section 5 provides the empirical analysis of US real

value added, domestic citation weighted patents, and foreign citation weighted patents across

14 US manufacturing industries over the 28 year period from 1977 to 2004. Our total sample
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size is 392 observations in a fully balanced panel. While this is not as large a sample as used in

many firm level studies, it is large enough to employ a panel VAR methodology. The panel is

also balanced, and this makes it possible to conduct a set of panel cointegration tests.

4 Data

Data for all utility patents in the United States for the period 1976-2006 are obtained from the

NBER patent data project (Hall, Jaffe and Trajtenberg 2001).4 Application date as opposed

to grant date is used to account for lags in granting of patents. In this data set, each patent

has a current technology class and a subclass as of 2008. This is beneficial as the United States

Patent and Trademark Offi ce (USPTO) constantly revises the technology class, and having

each patent classified based on a current class allows for a consistent analysis and comparison.

Using each patent’s current technology class and subclass as of 2008 and a concordance from

USPTO, patents are matched to 21 unique manufacturing product fields based on the 2002

North American Industry Classification System (NAICS). Based on the patent’s first-inventor

residence, patents are classified as US or foreign. Further, the total number of US and foreign

patents by application year and product field are calculated. Citation-weighted US and foreign

patents by application year and product field are calculated using the number of citations each

patent received from 1976-2006 multiplied by a truncation weight that corrects for the citation

truncation. It is a multiplier that can be applied to the number of total citations to adjust for

the fact that earlier patents had a longer span and therefore might have more citations. As

described in Hall et al (2001), truncation weight for citations is estimated based on the patent’s

grant year and technology category using six field specific obsolescence-diffusion model with year

and lag dummies. Measure of truncated citations is not accurate for the last couple of years in

the sample, as two-three years is a short time to obtain a correct measure of citations. This

necessitates a restriction of the analysis to 1976-2004.

4Although patent data for US is available beyond 2006, the citations data is not easily available. Therefore we
are using patent and patent citation data from 1976-2006 available from the NBER Patent Data Project.
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Data on manufacturing value added by industry in the period of 1977-2004 is downloaded

from the United States Bureau of Economic Analysis (BEA). Data on value added in 1976 is

missing for many industries, therefore the time period is further reduced to 1977-2004. Industry

categories of value added in 1977-1997 are based on NAICS 2002 classification system, while

industry categories in 1998-2004 are based on NAICS 2007 classification system. Using a con-

cordance from BEA, these two time periods are consistently combined by aggregating several

industries. Using the BEA chain-weighted GDP price deflator (2009 as the base year), value

added is deflated to obtain real value added. To match data on patents with real value added

further aggregation of industries is necessary, which reduces the number of industries from 21

patent fields to 14 industries (see Table A1 in the Appendix).5

The final data set is a balanced panel of real value added, domestic and foreign US patents

and citation-weighted domestic and foreign US patents for 14 manufacturing industries for the

period of 28 years (1977-2004). Summary statistics are available in Table 1.

Table 1 Descriptive Statistics
Variable Obs Mean Std. Dev. Min Max

Real Value Added 392 1031.669 508.215 194.561 2759.531
Unweighted US Patents 392 3426.755 5650.229 26 40307

Unweighted Foreign Patents 392 3067.069 5205.933 8 37371
Weighted US Patents 392 50752.25 115727.4 27.080 961178.1

Weighted Foreign Patents 392 29489.9 61746.18 0 484808

Note: Real value added is deflated using BEA chain-weighted GDP price deflator. Unweighted US and foreign patents are

raw number of domestic and foreign patents in the United States. Weighted US and foreign patents are weighted by the

number of citations that each patent received, taking into account the truncation weight.

As we can see from this table, means of unweighted US and foreign patents are close at
3427 and 3067 accordingly. US citation weighted and foreign citation weighted patents have
substantially higher means as expected. However, the mean of weighted US patents is much
higher than the mean of weighted foreign patents, 50752 and 29489 accordingly. The standard
deviation for both weighted US and weighted foreign patents also increases substantially

5The code for the matching of patents to NAICS industrial classification and subsequently matching to BEA
industrial classification is available from authors upon request.
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Table 2 Descriptive Statistics by Industry

Industry Variable Mean Std.Dev. Min Max
Food, Real Value Added 1647.219 255.481 1315.886 2098.263
Beverage, Weighted US Patents 3299.365 1406.299 49.697 5178.832
Tobacco Weighted Foreign Patents 1284.906 502.338 13.538 1974.926
Textiles, Real Value Added 688.571 110.956 395.838 843.392
Apparel, Weighted US Patents 7126.109 3379.718 281.481 13979.190
Leather Weighted Foreign Patents 2952.904 1199.626 40.613 4635.442
Wood Real Value Added 307.999 41.607 194.561 367.659
Products Weighted US Patents 994.735 451.155 198.616 1867.634

Weighted Foreign Patents 398.902 216.413 0.000 973.138
Paper, Real Value Added 1070.506 149.841 817.263 1296.117
Printing Weighted US Patents 5607.688 2756.754 107.817 10248.13

Weighted Foreign Patents 2400.693 1113.790 0.000 4372.585
Chemicals Real Value Added 1662.031 495.269 1109.555 2583.014

Weighted US Patents 71958.040 34894.870 1292.722 161482
Weighted Foreign Patents 37334.62 15794.730 610.552 73126.98

Plastics, Real Value Added 1402.553 211.172 1016.297 1753.088
Rubber, Weighted US Patents 30612.71 11707.12 1299.26 48856.89
Oth. Transp. Eqp. Weighted Foreign Patents 19703.58 7594.005 1365.269 34400.3
Non-metalic Real Value Added 432.656 60.195 303.715 541.597
Mineral Weighted US Patents 9802.362 3805.178 374.427 16597.99
Products Weighted Foreign Patents 6034.039 2477.692 278.798 10105.26
Primary Real Value Added 647.515 171.402 455.710 1068.62
Metals Weighted US Patents 2522.180 898.846 27.080 4093.911

Weighted Foreign Patents 2291.783 846.884 7.590 3818.698
Fabricated Real Value Added 1216.131 125.096 1012.710 1486.616
Metal Weighted US Patents 29238 10259.610 1624.095 46504.410
Products Weighted Foreign Patents 15805.590 5775.240 1168.871 25357.410
Machinery Real Value Added 1256.190 128.301 1050.133 1484.898

Weighted US Patents 77426.580 31353.550 5483.836 132857.700
Weighted Foreign Patents 67302.960 27290.150 7863.572 115122.300

Computer, Real Value Added 1590.826 520.709 779.261 2759.531
Electronic Weighted US Patents 349655.200 283047.400 23547.650 961178.100
Products Weighted Foreign Patents 190000.600 142325.600 19887.100 484808
Electr. Equipment, Real Value Added 546.157 35.947 458.314 613.021
Appliances, Weighted US Patents 45750.120 20910.050 7625.862 83238.300
Components Weighted Foreign Patents 31516.040 17912.370 9062.338 65634.800
Motor Vehicles Real Value Added 1178.784 302.958 676.416 1689.964
Trailers, Weighted US Patents 14477.160 8819.624 3382.220 31824.880
Parts Weighted Foreign Patents 16899.590 8543.569 3571.070 33830.340
Furniture, Real Value Added 796.226 208.832 527.308 1136.183
Other Weighted US Patents 62061.260 37635.230 2597.313 133752.500
Manufact. Weighted Foreign Patents 18932.410 9624.425 711.702 40560.640
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as compared to the standard deviation of the unweighted measures. Since the descriptive

statistics above are for 14 manufacturing industries, there might be variation by industry. De-

scriptive statistics by industry are presented in Table 2. As the analysis is concentrated on

citation weighted patents, only weighted US patents and weighted foreign patents are presented

in Table 2.

As we expected, Table 2 shows that there is substantial variation in both value added and

weighted US and foreign patents across industry. The highest numbers of weighted patents are

in Computer and Electronic Products, Chemicals, and Electrical Equipment, Appliance and

Components industries. In the empirical analysis, cross-industry differences are controlled for

by the inclusion of the industry fixed effect.

5 Empirical Results

Since the data are annual time series, unit roots and non-stationarity are a concern. Figures 1 &

2 plot real value added (Value), citation weighted foreign patents (FPat), and citation weighted

US patents (Pat) for each of the industries in the data set. Given the high number of patents in

the Computer and Electronics industry and the Chemical industry these industries are plotted

separately to maintain a readable scale for the plots of the variables in the other industries.

The graphs show clear and potentially deterministic trends in the Value variable across

industries. The FPat and Pat variables tend to show a clear upward trend and a reversal in

trend sometime in the 1990s, again the same pattern is clear across industries. This reversal

in the trend is evident for both US citation weighted patents and foreign citation weighted

patents.6 In general the plots of all three variables across industries suggests the possibility of

non-stationarity.

6We use patent application year and not grant year to account for the lags in granting of patents, but since
NBER patent dataset lists only patents granted through 2006, some patents that were applied for in the last years
of the dataset will not be part of our data. In addition, there was a slowdown in the patent granting process
because of the backlog of the applications and policy issues in late 1990s and early 2000s which additionally
contributed to the drop of patents in our dataset.
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Figure 1 Time-Series Plots
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Figure 2 Time-Series Plots: Chemicals and Computers & Electronics
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In formulating an approach to VAR construction, the information concerning the order of

integration is essential. A VAR in first differences with an error correction term is appropriate

if the levels of all variables contain a unit root and there exists a cointegrating vector between

the variables in levels. If there is no cointegrating vector in levels and the differences of the

variables are stationary a VAR in first differences is appropriate. Thus, we first test the order of

integration for the levels and differences of the variables. Once we have established the order of

integration for the variables we investigate the possibility of including an error correction term.

The first two rows of Table 3 show the results of the panel unit root tests for a full panel

across all industries. The next two sets of results are based on a disaggregation of the full panel.
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The panel unit root test is the PPerron panel unit root test. This test is appropriate for our

data in the sense that the data is balanced and the number of cross sectional panels (N) are

considered to be constant as T tends to infinity. The unit root tests of the level of Value, based

on inspection of Figures 1 & 2, includes a time trend. All tests allow for panel specific intercepts.

Table 3 Panel Unit Root Tests
Value FPat Pat dValue dFPat dPat

All
PP 23.4630 6.1900 3.4728 273.6319* 132.6447* 148.4292*

31&32
PP 8.6281 2.5340 1.2093 95.8033* 94.6675* 90.4111*
33
PP 11.0049 2.7957 1.7629 125.3746* 20.4936*** 38.0888*

Note: PP is a PPerron panel unit root test. The test of the level of Value includes a trend term. ***indicates significance
at 10% level. **indicates significance at 5% level. *indicates significance at 1% level.

The PP statistic tests the null hypothesis that all panels contain a unit root against the

alternative that at least one is stationary. This test indicates unit roots across the levels of

all three variables. This is evident when all industries are included in the panel and for the

disaggregation of industries into two groups. We have 14 manufacturing industries in the sample.

To look at a more disaggregated evidence of direct knowledge spillovers by industries, we split

the sample into two groups- seven industries that comprise the aggregated 31 & 32 industries as

one group, and the other seven industries of the aggregated industry 33. As we can see from table

2, there is substantial variation of patenting and value added across industries which motivated

this disaggregation. Further evidence on differences between these two groups of industries is

provided in the next section.

To test the order of integration for the variables, the 1st differences of the levels are tested

for unit roots. These results are reported in columns (4) - (6) in Table 3. No evidence of

non-stationarity is found in any of the panel unit root tests of the 1st differences, suggesting

that the variables are integrated of order one, I(1). Figures 3 & 4 show the first differences of

Value, FPat, and Pat.
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Figure 3 Time-Series Plots of First-Differences
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Figure 4: Time-Series Plots of First-Differences: Chemicals and Computers & Electronics
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This information is of considerable importance in specifying an appropriate empirical model.

Before concluding that a model in 1st differences is appropriate, the issue of cointegration must

be considered. If a cointegrating vector exists between Value, FPat, and Pat, an appropriate

model must specify the dynamics correctly by including an error correction mechanism. If it is

found that no cointegration exists, a model in first differences is appropriate.
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Table 4 Panel Cointegration Tests
All Test Statistic Robust P-value
Ga 4.899 0.948
Gt 3.262 0.760
Pt -0.080 0.236
Pa -0.833 0.938
31&32
Ga 3.570 0.908
Gt 2.162 0.658
Pt -4.005 0.366
Pa -7.198 0.186
33
Ga 1.735 0.538
Gt -5.158 0.318
Pt -6.048 0.130
Pa -7.784 0.104

Note: The cointegration tests, which allow for a constant in the cointegrating relationship, are z scores that can be

compared to the standard normal distribution. Robust p-values are based on bootstrapped critical values and are robust

to cross-sectional dependence. The null hypothesis of no cointegration is rejected if z score is below the critical value.

Table 4 provides four tests of panel cointegration based on Westurlund (2007). In every

case we fail to reject the null hypothesis of no cointegration (the details on these tests are

provided in the Appendix). The conclusion is that a model in 1st differences, without an error

correction specification, is adequate for investigating the relationship between Value, FPat, and

Pat, henceforth denoted as dValue, dFPat, and dPat, respectively.

A panel Vector Auto Regression (PVAR) is employed to evaluate the response of first dif-

ferences of US citation weighted patents to changes in foreign citation weighted patents and

changes in real value added. This technique is based on work by Love and Zicchino (2006) who

developed a panel VAR model to investigate investment behavior and the degree of financial

development. The approach has found use in other areas of economics including studies of

innovation. A good review is found in Canova and Ciccarelli (2013). To our knowledge this is

the first paper to use a PVAR model to investigate knowledge spillovers.

We begin by investigating a full panel of 14 industries. Given the results reported in Table

3 and Table 4 a PVAR in first differences is the correct specification. A major advantage of
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the PVAR framework over the empirical methodology employed in the literature to date is that

each variable in a Panel VAR model is treated as potentially endogenous. The PVAR is ideal

for investigating the dynamic relationship between knowledge and knowledge spillovers between

these industries in the US and their foreign counterparts. The estimated model is a pth order

PVAR where p is order of the autoregressive lag. The panel VAR is specified as follows:

Yi,t = A1Yi,t−1 +A2Yi,t−2 + ...+ApYi,t−p + fi + ut + ei,t (1)

i ∈ {1, 2, ..., N} , t ∈ {1, 2, ..., Ti}

The panel is defined by N = 14 industries (i) and a total of T = 28 years (t) for all i in a

strongly balanced panel. The vector Yi,t includes k = 3 variables: (1) dValue, (2) dFPat, and

(3) dPAT. These transformed (first differenced) variables are stationary and are used to identify

the relationship between innovations in foreign patenting and US patenting and vice versa. The

industry fixed effect, fi, absorbs cross-industry variation in the mean of each industry series.

In a dynamic setting, the commonly employed mean-differencing procedure would create biased

coeffi cients on the lagged dependent variables (see Arellano and Bover, 1995). Following Love

and Zicchino (2006), the cross sectional mean is subtracted from each series to remove any

time fixed effects before Helmert forward mean-differencing is implemented to remove industry

fixed effects. The time fixed effects, ut, are included to account for the recent drop and partial

recovery in patent activity that is evident across industries for both domestic and foreign citation

weighted patent activity. The individual equations are stacked and simultaneously estimated

using GMM. In this process L ≥ kp instruments are constructed from lagged values of the Yi,t.

It is common the use various information criteria such as the Akaike or Bayesian criteria to

choose a model structure in time series analysis. Analogous methods are available for a panel of

time series data. The concern is the selection of the lag, p, in the PVAR and the selection of the

q, the lag in the dependent variables used in instrumentation. The criteria used in a PVAR are

based on Hansen’s J statistic for over identifying restrictions and are, therefore, only available

when q > p, in an over identified model. These Consistent Model Moment Selection Criteria
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(CMMSC) are reported in Table 5. Three CMMSC criteria based on the Bayesian, Akaike, and

Hannan-Quinn information criteria are arranged in the table. Using q=5 lags per variable the

three CMMSC statistics are calculated for lags 1 through 4.

Looking at the full panel, the MBIC and the MQIC criteria both pick a single lag. The

MMSC picks a lag of 3. A model structure with 3 lags leads to 9 Eigen values. This structure

leads to the modulus of one Eigen value outside of the unit circle and two Eigen values very

close to the unit circle. A single lag leads to three Eigen values, all well within the unit circle.7

The results reported below are based on a one lag PVAR.

Table 5 Optimal Lag Selection
Lag MBIC MMSC MQIC

All
1 -145.8767 -11.59313 -65.28591
2 -111.1176 -10.4049 -50.67448
3 -81.57953 -14.43773 -41.28412
4 -38.66526 -5.094357 -18.51755
31&32
1 -108.9334 -11.71611 -51.14797
2 -84.10921 -11.19624 -40.77014
3 -64.69094 -16.08229 -35.79822
4 -36.06864 -11.76432 -21.62228
33
1 -92.42331 -13.38746 -45.50568
2 -55.71253 -3.021964 -24.43411
3 -28.2977 -1.952422 -12.65849
4 0 0 0

MBIC = J − ( |q| − |p| )k2 ln (n),MMSC = J − 2( |q| − |p| )k2,
MSC = J − 2( |q| − |p| )k2,MQIC = J −R( |q| − |p| )k2 ln (n).
In each case J is Hansen’s J for over identification.

The estimated coeffi cients of Equation 1 are reported in Table 6. While it is possible to

calculate Granger causality tests, they are not necessary with a single lag. It is clear that

changes in US patents are Granger caused by changes in real value added and changes in foreign

patenting activity in the US. Likewise changes in foreign patents are Granger caused by changes
7The Eigen values of the 1 lag PVAR are .74, .61, and .42.
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in real value added and changes in US patenting activity. Changes in domestic patents Granger

cause changes in real value added.

Table 6 PVAR Coeffi cients: All Industries
dValue Coeff SE Z P-value
dValueL1 -.4224984* .0707694 -5.97 0.000
dPatL1 .0013848* .0004843 2.86 0.004
dFPatL1 -.0014049 .0008571 -1.64 0.101

dFPat Coeff SE Z P-value
dValueL1 19.34668* 2.926158 6.61 0.000
dPatL1 .4357614* .0392505 11.10 0.000
dFPatL1 .042496 .0864129 0.49 0.623

dPat Coeff SE Z P-value
dValueL1 17.79214* 6.045447 2.94 0.003
dPatL1 1.315546* .1153113 11.41 0.000
dFPatL1 -.914959* .2229234 -4.10 0.000

*indicates significance at 1% level.

It is important to remember that these coeffi cients are not structural parameters. The

estimated coeffi cients are functions of contemporaneous structural coeffi cients and cannot be

used to evaluate the role of foreign knowledge spillovers on US innovation or value added without

further restrictions. The most common means of identifying structural shocks is to employ a

Choleski decomposition of the variance-covariance matrix of residuals and investigate impulse

response functions.

The Choleski decomposition is a recursive or triangular decomposition requiring an ordering

of the variables such that contemporaneous correlation for any pair of variables is assigned to

shocks in the variable ordered first. This decomposition exactly identifies the structural para-

meters. For example, the ordering of: (1) dValue, (2) dFPat, (3) dPat implies that innovations

in dValue have a contemporaneous impact on dPat and dFPat and that dFPat has a contempo-

raneous impact on dPat but not dValue. This ordering is motivated by evidence, outlined in the

introduction, that innovative activity follows the business cycle and the idea that innovations

are geographically localized and take time to adapt for and spread to foreign markets. Figure 5

presents IRFs from periods 0 to 10.
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Figure 5 Impulse Response Functions: All Industries
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The top left panel of Figure 5 shows the response of US citation weighted patent activity to

a one standard deviation increase in foreign citation weighted patent activity. A one standard

deviation change in dFPat is 12,505 patents and this leads to a large contemporaneous increase in

US citation weighted patents of 11,177 patents, nearly as large as a change in domestic citation

weighted patenting activity. The impacts are statistically significant, as seen from the 95%

confidence bands. The impact of a one time innovation to citation weighted foreign patent

activity is also long lived, after 5 years the response is 1,022 US citation weighted patents and

after 10 years the response is 102 citation weighted patents. The initial response, however,

is only 46% of one standard deviation in citation weighted US patents. Though the shock to

dFPat has the expected impact on US value added (see the lower left panel) the result is not
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statistically significant. It would take a large shock to foreign citation weighted patents to

generate a significant effect on US industry value added. It is important to remember that the

model accounts for the direct influence of foreign innovation on US productivity, an impact that

includes indirect channels of technological diffusion and trade in intermediate goods.

The top right panel of Figure 5 shows the response of citation weighted foreign patent activity

to a one standard deviation increase in US citation weighted patent activity. A one standard

deviation change in dPat is 24,401 patents and this leads to a contemporaneous increase in

foreign citation weighted patents of 5,282 foreign patents at the one period lag. This impact is

highly significant and, as in the case of foreign citation weighted patents on US citation weighted

patents, long lived. Note that the impulse in citation weighted US patents is about twice as

large as the impulse in dFPat, but the response in dFPat in the upper right panel is just half

the response in dPat in the upper left panel. The lower right panel shows the impact of US

citation weighted patent shocks on US real value added. The impact of a one standard deviation

increase in US citation weighted patents has a significant impact on value added.

The asymmetric response of foreign citation weighted patents to US citation weighted patents

compared to the impact of a one standard deviation increase in foreign citation weighted patents

on US citation weighted patents is consistent with the idea that technology is geographically

localized and foreign patent activity in the US represents foreign technology that has been made

ready for US markets. Clearly an increase in US patents leads to a much lower impact of foreign

patent activity in the US, indicating that much of the knowledge these patents represent are

geographically idiosyncratic and local to the US economy. However, the positive impact of

domestic citation weighted patents on foreign patent activity in the US does indicate that the

US has strong absorptive capacity.8

The interpretation of the results is evident in the forecast error variance decomposition

(FEVD). It is useful to decompose the forecast error variance into the proportions due to each

type of shock. The variance decomposition is reported in Table 7, which shows the percentage

8 It is important to note that direct spillover effects that we find are within industries, as the model does not
allow for direct cross-industry knowledge spillovers.
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of long-run variation in each variable that is explained by each shock in the estimated VAR.

This decomposition for each variable is shown at forecast horizons of 5, 10, and 20 years. It is

common to find that a large degree of variation in a variable is due to its own innovations, but a

considerable amount of the variation in changes in weighted US patenting (13-16%) is explained

by innovations to the change in weighted foreign patents. However, this variation in foreign

citation weighted patent activity has a very small impact on US value added, explaining less

than .2% of the variation in value added. US citation weighted patent activity explains a more

sizable 6.5% of the variation in value added at 10 and 20 year horizons.

A larger percentage of the variation in changes in weighted foreign patents is explained by

changes in weighted US patents over various forecast horizons (61-70%). This is also highly

indicative of a strong absorptive capacity in the US. While the IRFs and FEVDs clearly support

the hypothesis that there are important links between US and foreign innovation that go beyond

the indirect channel of spillovers on value added, the role of the direct channel is likely to be

limited in economic significance.

Table 7 FEVD
impulse

response dValue dValue dFPat dPat
h=5 .9404547 .0016717 .0578736
h=10 .9331383 .0016802 .0651814
h=20 .9326347 .0016795 .0656857

impulse
response dFPat dValue dFPat dPat
h=5 .0138117 .3754795 .6107088
h=10 .0160337 .2903017 .6936647
h=20 .0162403 .2842333 .6995265

impulse
response dPat.. dValue dFPat dPat
h=5 .0183021 .1558226 .8258752
h=10 .0193615 .1290026 .8516359
h=20 .0194584 .1271431 .8533984
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In order to further investigate the significance of the direct channel for knowledge spillovers

the same methodology is applied to slightly less aggregated panels. Looking at the two speci-

fications for similar 2 -digit industries in Table 5 it is clear that the optimal lag length remains

equal to 1. Table 8 presents the PVAR reduced form coeffi cients.

Table 8 PVAR Coeffi cients: Disaggregated Panels
Two Digit 31&32 Two Digit 33

dValue Coeff SE Z P-value
dValueL1 -.290443* .0992531 -2.93 0.003
dPatL1 -.0022341 .0022486 -0.99 0.320
dFPatL1 .0012227 .0010653 1.15 0.251

dValue Coeff SE Z P-value
dValueL1 -.5629044 .0674378 -8.35 0.000
dPatL1 -.0014052 .0007565 -1.86 0.063
dFPatL1 .0016134 .0004189 3.85 0.000

dFPat Coeff SE Z P-value
dValueL1 41.61873* 6.072194 6.85 0.000
dPatL1 1.361777* .1733257 7.86 0.000
dFPatL1 -.273286* .0912107 -3.00 0.003

dFPat Coeff SE Z P-value
dValueL1 9.06024* 2.481525 3.65 0.000
dPatL1 -.141147* .0463898 -3.04 0.002
dFPatL1 .5320518* .0162603 32.72 0.000

dPat Coeff SE Z P-value
dValueL1 62.17262* 10.29526 6.04 0.000
dPatL1 1.643522* .3040632 5.41 0.000
dFPatL1 -.1395098 .1641041 -0.85 0.395

dPat Coeff SE Z P-value
dValueL1 -19.0837* 6.143473 -3.11 0.002
dPatL1 -1.51722* .1650783 -9.19 0.000
dFPatL1 1.633414* .0873189 18.71 0.000

*indicates significance at 1% level.

Figure 6 presents the IRFs for disaggregated industries. The estimation for a panel of 31 and

32 2-digit industries includes industries such as Chemicals, Food, Textiles, Paper Products and

Wood Products. These industries show patterns different from the aggregated results reported

above. First, though a one standard deviation shock to dFPat has a significant and positive

impact on dPat the impact of a one standard deviation change in dPat has a significantly negative

impact on the amount of foreign citation weighted patenting in the US, dFPat. Furthermore,

neither of these shocks has a significant impact on value added, though the movement in value

added in response to a shock in domestic citation weighted patents is in the expected direction.
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Figure 6 Impulse Response Functions: Two Digit Industries 31&32
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Two Digit Industries 33
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The dynamics of the 2 digit panel of industries in 33 are very different from the dynamics in

the industries in the 31 and 32 2-digit industries. The 33 2-digit industries include Computers,

Electronics, Machinery, and Fabricated Metals. The dynamics are qualitatively similar to those

reported in the all industry panel. Quantitatively, the impact of domestic citation weighted

patents is about 2.5 times the impact of foreign citation weighted patents on value added. The

most important difference is related to the impact of foreign citation weighted patent activity

in the US on value added, it is now statistically significantly positive. This impact, as already

mentioned, is still much smaller than the impact of domestic citation weighted patent activity.
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In addition the impact of foreign citation weighted patent activity on value added is of much

shorter duration than the impact of domestic citation weighted patent activity, about 2 years

in response to an impulse from dFPat compared to more than 10 years following an impulse to

dPat.

The response of dValue from an impulse in dFPat is positive and significant over a two year

horizon, and then turns negative but insignificant before returning to zero. This suggests that,

while there is a positive short run increase in dValue following a shock to dFPat, the long run

response of dValue to a shock to dFPat is questionable. Figure 7 presents Cumulative IRFs in

order to shed some light on this issue.

Figure 7 Cumulative Impulse Response Functions: Two Digit Industries 33
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It is clear that a shock to dFPat leads to a significant short run response in dValue after

2-3 years, however, the significance of the cumulative response of dValue to a dFPat shock is

insignificantly different from zero. On the other hand, the cumulative response of dValue to a

shock to dPat is both large and significant. US 2-digit industries classified as 33 do benefit from

foreign citation weighted patent in the US, but the magnitude and duration of the response of

value added is a fraction of the response in value added to shocks in domestic citation weighted

patent activity.
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6 Conclusion

This paper analyzes international knowledge spillovers using a panel VAR methodology. The

importance of investigating international technology spillovers stems from the fact that they are

seen as important sources of economic growth and productivity/ income convergence. However,

the current literature has had diffi culty empirically separating direct and indirect knowledge

spillovers. A panel VAR methodology allows us to investigate the role of direct knowledge

spillovers by looking at citation weighted domestic patents, citation weighted foreign patents

and value added for 14 manufacturing industries over the period of 1977-2004. The benefit of

the panel VAR is that it enables us to address endogeneity concerns by treating each variable

symmetrically in a fully dynamic model. By pooling data across US manufacturing industries

and allowing for fixed effects more effi cient and complete estimates of dynamic relationships

between domestic and foreign innovative activity are possible.

The results indicate that there is a statistically significant direct knowledge spillover channel

impacting US innovation, but the direct channel’s impact on domestic US value added is limited.

Large changes in foreign citation weighted patents are required if a statistically significant impact

on US value added is to be expected. Furthermore, the dynamics uncovered in this paper

suggest very different roles for direct spillover channels across industries. The benefits of

foreign innovation, where they are realized, are of shorter duration and limited in magnitude

compared to the role of domestic innovative activity. In addition, very little of the variation in

domestic value added can be explained by foreign citation weighted patent activity. The story

is quite different when looking at the role of domestic citation weighted patents on domestic

value added. In a full panel, foreign citation weighted patent activity in the US also responds

significantly to impulses in citation weighted US patent activity suggesting the importance of

absorptive capacity. Though many recent theories of trade, growth and convergence emphasize

the role of direct knowledge flows, we find strong evidence that these knowledge flows might not

be universally economically significant.

The US economy is highly advanced and has excellent absorptive capacity. One might expect

28



the US to be in an excellent position to benefit from direct spillovers of knowledge. While there

is strong evidence that US patenting activity does benefit from foreign innovation, the impact

on US value added is small relative to the role of innovation originating from within the US.

This result certainly deserves further investigation considering the mechanisms tested in this

paper are central to modern theories of trade and growth. The US economy is very unique

both in terms of its absorptive capacity and its proximity to the global technological frontier. A

combination of absorptive capacity and a significant technology gap might be required to realize

significant benefits from knowledge spillovers, suggesting that there may be a more prominent

role for direct spillovers in some developing economies. Future research should investigate this

possibility.
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7 Appendix

7.1 Matching of Various Classifications

Table A1 Matching of USPTO to NAICS and BEA Classifications

USPTO Code Product Field Title NAICS Code
1, 2 Food; Beverage & Tobacco Products 311, 312
3 Textiles, Apparel & Leather 313, 314, 315, 316
4 Wood Products 321
5 Paper, Printing & Support Activities 322,323
6 Chemicals 325
11, 25, 26 Plastics & Rubber Products; Other Transp. Equipment 326, 3364, 3365, 3366, 3369
12 Nonmetallic Mineral Products 327
13 Primary Metal 331
14 Fabricated Metal Products 332
15 Machinery 333
16 Computer & Electronic Products 334
22 Electrical Equipment, Appliances, & Components 335
24 Motor Vehicles, Trailers and Parts 3361, 3362, 3363
27, 28 Furniture & Related Products; Miscellaneous Manufact. 337, 339

Note: USPTO to NAICS concordance is obtained from

http://www.uspto.gov/web/offi ces/ac/ido/oeip/taf/data/naics_conc/2008_diskette/read_me.txt.

NAICS to BEA industry match is conducted based on http://www.bea.gov/industry/gdpbyind_data.htm.

7.2 Tests of Panel Cointegration

Table 4 provides four tests of panel cointegration based on Westurlund (2007). The tests are

based on the following specification:

dPati,t = δ
′
tat + αi(Pati,t−1 − β

′
ixi,t−1) +

pi∑
j=1

(αi,jdPati,t−j) +

pi∑
j=1

(
γi,jdxi,t−j

)
+ ei,t, (2)

where d is a first difference operator, at = [1], and xi,t =
[
V aluei,t FPati,t

]′
. This test of

panel cointegration requires a balanced panel. The deterministic components, at, allow for a

stochastic trend. The second term is the error correction mechanism, where αi is panel i’s speed
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of adjustment parameter. The lag length, pi, for each time series is chosen based on the best

AIC. If the levels of Value, FPat and Pat are cointegrated, it is expected that αi < 0. The

test for panel cointegration is a test of the null hypothesis that αi = 0 for all i. The first two

tests are group means tests for cointegration, in which the appropriate alternative hypothesis is

αi < 0 for at least one i. The second two tests restrict the αi to be equal across panels such

that the appropriate alternative is αi = α < 0 for all i. The robust p values reported in Table

4 are bootstrapped and account for the possibility that there is cross sectional interdependence

in the error terms, ei,t. In every case we fail to reject the null hypothesis of no cointegration.
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